

Team 17 Faculty Panel Presentation December 4th, 2022

### Meet the Team

David WolfeCybETom RuminskiCprERian LamarqueCybEEli HansonCybEJoe HunterCprESyed Al-hussainSE

- IoT Sensors & Basestation
- IoT Sensors & Basestation
- AWS Infrastructure
- AWS Infrastructure
- Frontend Development
- Frontend Development

Professor Govindarasu

- Advisor/Client

### **Problem Statement**

- Primary Problem:
  - Farmers need to manually test, record, and chart Internet of Things (IoT) sensor data
  - IoT Farming is inaccessible
  - No method of detection for malicious activity
- Gap in the Market:
  - <u>KaaloT</u>
    - Closed Source
    - No detection
  - **Opensensing** 
    - Open Source
    - Unintuitive and complex



Figure 1. Manually checked soil sensor.

### **Project Context**

- Intended for small and large farm owners
- Implement a secure IoT platform to enable data collection and analysis

| Problem:                       | Solution:                             |  |
|--------------------------------|---------------------------------------|--|
| Time consuming data collection | Sync to Cloud                         |  |
| Lack of anomaly detection      | AI powered analysis                   |  |
| No real time data access       | ss Mobile App with real time readings |  |



Figure 2. Sensor to Cloud Syncing

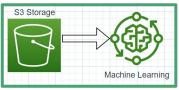



Figure 3. Anomaly Detection

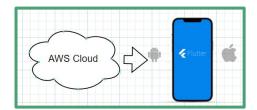



Figure 4. Real Time Data Access

## Solution Overview

### System Diagram

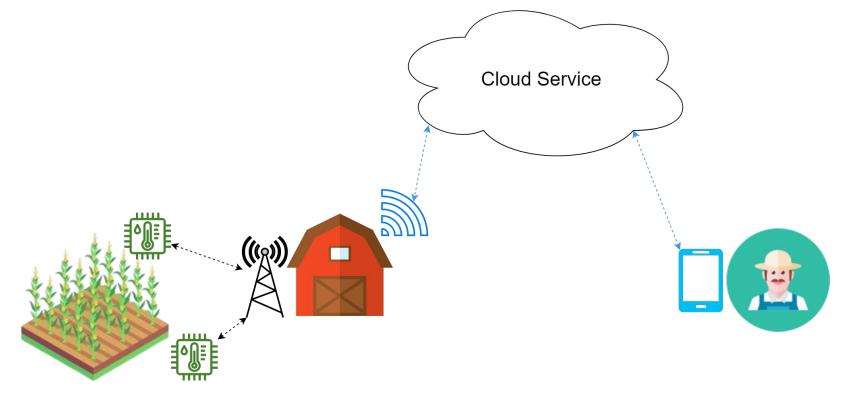



Figure 5. System Overview I.

### System Diagram

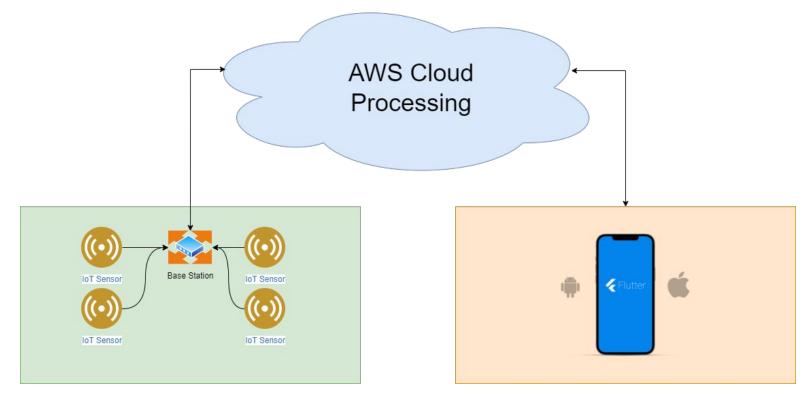



Figure 6. System Overview II.

# User & Project Analysis

### **Intended Users & Uses**

- 1. Large Scale Farmers
- 2. Gardeners (Smaller family farms)
- 3. System Administrators
- 4. Co-Ops
- 5. Owners of only house plants (Students)
- 6. People learning to take care of plants



Figure 7. Large Scale Farm

### **How These Users Will Benefit**

- Improve crop yields with realtime data for large scale farmers
- Notifications supplied to users if plants need attention



Figure 8. User watering plants

### **Functional & Non-Functional Requirements**

### • IoT Sensors & Basestation

- **Functional:** Medium-long range wireless transmitter (LoRa)
- Non-Functional: Secure and consistent data collection and distribution
- AWS cloud
  - Functional: Data transfer using MQTT for IoT and SQS for application
  - Non-Functional: Data can be stored and accessible from any location and time
- Flutter application
  - Functional: Data visualization and representation of sensor data
  - Non-Functional: Data will be quickly accessible and up to date
- Security Requirements
  - Users will only be able to access their accounts data
  - Data will be encrypted end-to-end in transit

### **Additional Requirements & Constraints**

### • Physical

- Durability
- Sensor footprint
- Sensors are visible in the field
- Resource
  - Battery life should last from planting to harvest
- Environment
  - Batteries don't leak into soil
  - Materials don't change soil nutrient levels
- UI
  - System performs identically regardless of location
  - Operates on multiple operating systems
  - $\circ$  Users can not view other users data



Figure 9. Example existing sensor

# Project Plan

### **Project Management Plan**

Figure 10. Gantt Chart Milestones

- Research
  - Week 1 Week 2
- Design
  - Week 3 Week 6
- Development
  - Week 7 Week 16
- Security
  - Week 21 Week 28
- Testing
  - Week 30 Week 36

| Test All Implemented Security Features<br>Test Round Trip Functionality of System |  |
|-----------------------------------------------------------------------------------|--|
| Cloud to Front End Security                                                       |  |
| Order Sensor and Basestation                                                      |  |
| Front End Framework<br>Front End Architecture                                     |  |

### **Gantt Chart**

Figure 11. Gantt Chart

#### CySecAgri Research Cloud Services Cloud Storage Services IoT Field Sensors and Basestations Network Protocols for Sensors Network Protocols for Basestation Front End Framework Front End Architecture Design Create System Diagrams for IoT, Cloud, and Fro... Design Cloud Architecture

Design Cloud Architecture Create Figma Diagrams Create Mock Basestation Order Sensor and Basestation

#### Thanksgiving Break

Break

#### Development

Set Up Cloud Service Develop Front End Application Set Up Sensors Set Up Basestation

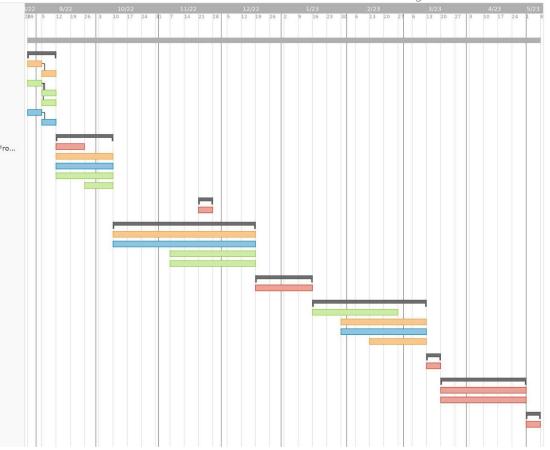
#### Winter Break

Break

#### Security

Sensor to Basestation Security Basestation to Cloud Security Front End Security Cloud to Front End Security

#### **Spring Break**


Break

#### Testing

Test All Implemented Security Features Test Round Trip Functionality of System

#### Demo

Demo and Evaluation



## **Complexity - IoT**

Basestation and sensor security

- Security Focused Deployment
  - Asymmetric cryptography
  - Full disk encryption
  - Ingress & Egress filtering

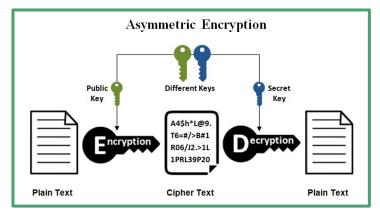
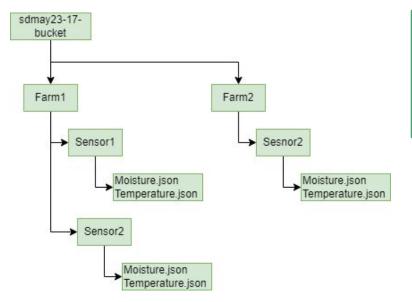




Figure 12. Encryption of Data in Transit

## **Complexity - Cloud**

Data storage design

• One user may access data from multiple sensors so an efficient storage solution is required



### S3 URI S3 URI S3://sdmay23-17-test-bucket/Farm1/Sensor1/moisture.json Amazon Resource Name (ARN) arn:aws:s3:::sdmay23-17-test-bucket/Farm1/Sensor1/moisture.json

Figure 14. AWS Console View

Figure 13. File Structure

# **Current Implementation**

### **IoT Sensors & Basestation**

- Sensor-to-Basestation Protocols
  - PHY LoRa RF
  - Data Link LoRaWAN
  - Application Layer OTAA
  - Topology Star
- Basestation-to-Cloud Protocols
  - PHY WiFi
  - Net/Transport TCP/IP
  - Application MQTT

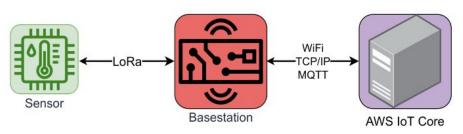
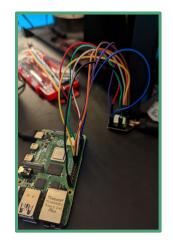




Figure 15. IoT Device Communication Diagram.

- Sensors (2)
  - Soil Temp. and Moisture
  - SenseCAP S2104
- Basestation (1)
  - LoRaWAN Concentrator Chip + RaspberryPi



## **AWS Infrastructure**

- IoT Core collects from mock base station
- Message Lambda parses hex data
- S3 receives decimal data from lambda for storage
- Frontend App queries S<sub>3</sub> for data

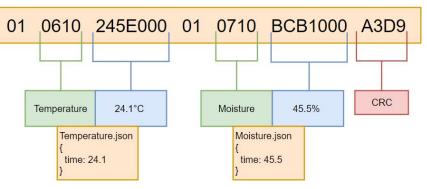
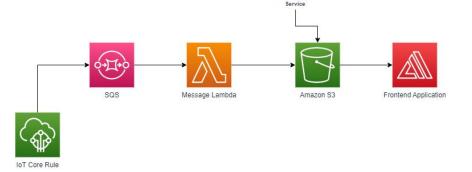




Figure 17. Hex Data to Decimal



Elasticsearch



### **Front End Development**

- Use RESTful API to get sensor data
- Scroll view to see sensor data
- Graph view to see sensor data and trends overtime

|           |           | Farm Name                                            | Farm Name |
|-----------|-----------|------------------------------------------------------|-----------|
| Ą         | -         | Molsture: 65.5<br>Channel: 2<br>SensorType: molsture |           |
|           |           |                                                      |           |
| CySecAgri | CySecAgri | CySecAgri                                            | Farm Name |
|           | Username  | Email                                                | Sensors   |
| Login     | Password  | Password                                             |           |
| Sign up   | Submit    | Re-Type Password                                     |           |
|           |           | Submit                                               | Logout    |

## **Testing Plan**

- Flutter app
  - Unit Testing
  - Integration Testing
- CI/CD Pipeline
  - Terraform for AWS infrastructure
- Manual Testing with sensors and raspberry pi basestation
- Offensive Security Testing
  - API Testing
  - Assumed Breach
    - Enumerate Privilege Escalation Vectors
  - Application Testing
    - Reverse engineering



Figure 20. Testing.

### Conclusion

- Currently:
  - Working prototype
  - Simulated IoT data
  - Prototype AWS architecture
  - Application proof of concept
- Next Semester:
  - Finalize basestation and inner AWS workings
  - Continue app development
  - Implement security
  - Security testing



Figure 21. Happy Consumers.

## Questions + Feedback